Processing math: 100%

test

\par\hich\af4\dbch\af31505\loch\f4(24)upstreamserviceflow
SyntaxHighlighter Test
set aa 123
puts 132
proc aa {} {
  # 1231231
  123
  abs(55)
  return $aa
}

foreach aa $BB {
  puts "123456\n"
}


123
acbc(modm)(c,m)=1}ab(modm)
{a+b}{c+d}


cblock test: tcl (class 還沒設定)


cblock test: cmd (偽cmd)


cblock test: ubuntu (偽ubuntu終端機)


cblock + AsciiMath test:

\sum_{x=1}^\infty
\varphi
\sum_{n=1}^{\infty} \frac {1} {n}
\prod_{n=1}^{\infty} \frac {1} {n}
x = \frac {-b \pm \sqrt {b^2-4ac}} {2a}
\phi (n) = (p-1) (q-1)


cblock + LaTeX test:

\sum_{n=1}^{10}
\sum_{x=1}^\infty
\varphi
\because
\therefore
a \bmod b
a \equiv b \pmod n
\left. 123456789123456 \right\}
\left\{ 2x+3y=105x8y=10 \right.
\sum_{n=1}^{\infty} \frac {1} {n}
\prod_{n=1}^{\infty} \frac {1} {n}
\pi
x = \frac {-b \pm \sqrt {b^2-4ac}} {2a}
\phi (n) = (p-1) (q-1)


cblock + LaTeX displaystyle test:

a \mid b
\gt \lt
\sum_{x=1}^\infty
\varphi
\because
\therefore
a \bmod b
a \equiv b \pmod n
\left. 123456789123456 \right\}
\left\{ 2x+3y=105x8y=10 \right.
\sum_{n=1}^{\infty} \frac {1} {n}
\prod_{n=1}^{\infty} \frac {1} {n}
\pi
x = \frac {-b \pm \sqrt {b^2-4ac}} {2a}
\phi (n) = (p-1) (q-1)




沒有留言:

張貼留言